As Voigt

Converts a Tensor2 or Tensor4 data type to a reduced Voigt-storage Tensor2s or Tensor4s.

Aliases:

  • voigt(T)
  • symstore(T)
\[\begin{align} \boldsymbol{C} = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{12} & C_{22} & C_{23} \\ C_{13} & C_{23} & C_{33} \end{bmatrix} \longrightarrow \begin{bmatrix} C_{11} \\ C_{22} \\ C_{33} \\ C_{12} \\ C_{23} \\ C_{13} \end{bmatrix} \end{align}\] \[\begin{align} \mathbb{A} &= \begin{bmatrix} A_{1111} & A_{1112} & A_{1113} & A_{1121} & A_{1122} & A_{1123} & A_{1131} & A_{1132} & A_{1133} \\ A_{1211} & A_{1212} & A_{1213} & A_{1221} & A_{1222} & A_{1223} & A_{1231} & A_{1232} & A_{1233} \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ A_{3111} & A_{3112} & A_{3113} & A_{3121} & A_{3122} & A_{3123} & A_{3131} & A_{3132} & A_{3133} \end{bmatrix} \nonumber \\ &\longrightarrow \begin{bmatrix} A_{1111} & A_{1122} & A_{1133} & A_{1112} & A_{1123} & A_{1113} \\ A_{2211} & A_{2222} & A_{2233} & A_{2212} & A_{2223} & A_{2213} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ A_{1311} & A_{1322} & A_{1333} & A_{1312} & A_{1323} & A_{1313} \end{bmatrix} \end{align}\]

Example

type(Tensor2) :: T
type(Tensor2s) :: U

U = asvoigt(T)